ChatGPT Prompt提示技巧工程完全指南(如何提问以获得高质量答案)
本文有点长,可以收藏起来,然后结合实际训练,边看边练习,达到真正掌握的目的。
探讨如何使用不同的提示工程技术来实现不同的目标。ChatGPT是一款最先进的语言模型,能够生成类似人类的文本。然而,理解如何正确地向ChatGPT提问以获得我们所需的高质量输出非常重要。
无论您是普通人、研究人员、开发人员,还是只是想在自己的领域中将ChatGPT作为个人助手的人。使用简单易懂的语言,提供实用的解释,并在每个提示技术中提供了示例和提示公式。您将学习如何使用提示工程技术来控制ChatGPT的输出,并生成符合您特定需求的文本。
第一章:Prompt 工程技术简介
什么是 Prompt 工程?
Prompt 工程是创建提示或指导像 ChatGPT 这样的语言模型输出的过程。它允许用户控制模型的输出并生成符合其特定需求的文本。
ChatGPT 是一种先进的语言模型,能够生成类似于人类的文本。它建立在 Transformer 架构上,可以处理大量数据并生成高质量的文本。
然而,为了从 ChatGPT 中获得最佳结果,重要的是要了解如何正确地提示模型。 提示可以让用户控制模型的输出并生成相关、准确和高质量的文本。 在使用 ChatGPT 时,了解它的能力和限制非常重要。
该模型能够生成类似于人类的文本,但如果没有适当的指导,它可能无法始终产生期望的输出。
这就是 Prompt 工程的作用,通过提供清晰而具体的指令,您可以引导模型的输出并确保其相关。
Prompt 公式是提示的特定格式,通常由三个主要元素组成:
任务:对提示要求模型生成的内容进行清晰而简洁的陈述。
指令:在生成文本时模型应遵循的指令。
角色:模型在生成文本时应扮演的角色。
在本书中,我们将探讨可用于 ChatGPT 的各种 Prompt 工程技术。我们将讨论不同类型的提示,以及如何使用它们实现您想要的特定目标。
第二章:指令提示技术
现在,让我们开始探索“指令提示技术”,以及如何使用它从ChatGPT中生成高质量的文本。
指令提示技术是通过为模型提供具体指令来引导ChatGPT的输出的一种方法。这种技术对于确保输出相关和高质量非常有用。
要使用指令提示技术,您需要为模型提供清晰简洁的任务,以及具体的指令以供模型遵循。
例如,如果您正在生成客户服务响应,您将提供任务,例如“生成响应客户查询”的指令,例如“响应应该专业且提供准确的信息”。
提示公式:“按照以下指示生成[任务]:[指令]”
示例:
生成客户服务响应:
任务:生成响应客户查询
指令:响应应该专业且提供准确的信息
提示公式:“按照以下指示生成专业且准确的客户查询响应:响应应该专业且提供准确的信息。”
生成法律文件:
任务:生成法律文件
指令:文件应符合相关法律法规
提示公式:“按照以下指示生成符合相关法律法规的法律文件:文件应符合相关法律法规。”
使用指令提示技术时,重要的是要记住指令应该清晰具体。这将有助于确保输出相关和高质量。可以将指令提示技术与下一章节中解释的“角色提示”和“种子词提示”相结合,以增强ChatGPT的输出。
第三章:角色提示
角色提示技术是通过为ChatGPT指定一个特定的角色来引导其输出的一种方式。这种技术对于生成针对特定上下文或受众的文本非常有用。
要使用角色提示技术,您需要为模型提供一个清晰具体的角色。
例如,如果您正在生成客户服务回复,您可以提供一个角色,如“客户服务代表”。
提示公式:“作为[角色]生成[任务]”
示例:
生成客户服务回复:
任务:生成对客户查询的回复
角色:客户服务代表
提示公式:“作为客户服务代表,生成对客户查询的回复。”
生成法律文件:
任务:生成法律文件
角色:律师
提示公式:“作为律师,生成法律文件。”
将角色提示技术与指令提示和种子词提示结合使用可以增强ChatGPT的输出。
下面是一个示例,展示了如何将指令提示、角色提示和种子词提示技术结合使用:
任务:为新智能手机生成产品描述
指令:描述应该是有信息量的,具有说服力,并突出智能手机的独特功能
角色:市场代表 种子词:“创新的”
提示公式:“作为市场代表,生成一个有信息量的、有说服力的产品描述,突出新智能手机的创新功能。该智能手机具有以下功能[插入您的功能]”
在这个示例中,指令提示用于确保产品描述具有信息量和说服力。角色提示用于确保描述是从市场代表的角度书写的。而种子词提示则用于确保描述侧重于智能手机的创新功能。
第四章:标准提示
标准提示是一种简单的方法,通过为模型提供一个特定的任务来引导ChatGPT的输出。例如,如果您想生成一篇新闻文章的摘要,您可以提供一个任务,如“总结这篇新闻文章”。
提示公式:“生成一个[任务]”
例如:
生成新闻文章的摘要:
任务:总结这篇新闻文章
提示公式:“生成这篇新闻文章的摘要”
生成一篇产品评论:
任务:为一款新智能手机撰写评论
提示公式:“生成这款新智能手机的评论”
此外,标准提示可以与其他技术(如角色提示和种子词提示)结合使用,以增强ChatGPT的输出。
以下是如何将标准提示、角色提示和种子词提示技术结合使用的示例:
任务:为一台新笔记本电脑撰写产品评论
说明:评论应客观、信息丰富,强调笔记本电脑的独特特点
角色:技术专家
种子词:“强大的”
提示公式:“作为一名技术专家,生成一个客观而且信息丰富的产品评论,强调新笔记本电脑的强大特点。”
在这个示例中,标准提示技术用于确保模型生成产品评论。角色提示用于确保评论是从技术专家的角度写的。而种子词提示用于确保评论侧重于笔记本电脑的强大特点。
第五章:零、一和少样本提示
零样本、一样本和少样本提示是用于从ChatGPT生成文本的技术,最少或没有任何示例。当特定任务的数据有限或任务是新的且未定义时,这些技术非常有用。
当任务没有可用的示例时,使用零样本提示技术。模型提供一个通用任务,根据对任务的理解生成文本。
当任务只有一个示例可用时,使用一样本提示技术。模型提供示例,并根据对示例的理解生成文本。
当任务只有有限数量的示例可用时,使用少样本提示技术。模型提供示例,并根据对示例的理解生成文本。
提示公式:“基于[数量]个示例生成文本”
例如:
为没有可用示例的新产品编写产品描述:
任务:为新的智能手表编写产品描述
提示公式:“基于零个示例为这款新智能手表生成产品描述”
使用一个示例生成产品比较:
任务:将新款智能手机与最新的iPhone进行比较
提示公式:“使用一个示例(最新的iPhone)为这款新智能手机生成产品比较”
使用少量示例生成产品评论:
任务:为新的电子阅读器撰写评论
提示公式:“使用少量示例(3个其他电子阅读器)为这款新电子阅读器生成评论”
这些技术可用于根据模型对任务或提供的示例的理解生成文本。
第六章:“让我们思考一下”提示
“让我们思考一下”提示是一种技巧,可鼓励ChatGPT生成反思和思考性的文本。这种技术适用于撰写论文、诗歌或创意写作等任务。
“让我们思考一下”提示的公式非常简单,即“让我们思考一下”后跟一个主题或问题。
例如:
生成一篇反思性论文:
任务:就个人成长主题写一篇反思性论文
提示公式:“让我们思考一下:个人成长”
生成一首诗:
任务:写一首关于季节变化的诗
提示公式:“让我们思考一下:季节变化”
这个提示要求对特定主题或想法展开对话或讨论。发言者邀请ChatGPT参与讨论相关主题。
模型提供了一个提示,作为对话或文本生成的起点。
然后,模型使用其训练数据和算法生成与提示相关的响应。这种技术允许ChatGPT根据提供的提示生成上下文适当且连贯的文本。
要使用“让我们思考一下提示”技术与ChatGPT,您可以遵循以下步骤:
确定您要讨论的主题或想法。
制定一个明确表达主题或想法的提示,并开始对话或文本生成。
用“让我们思考”或“让我们讨论”开头的提示,表明您正在启动对话或讨论。
以下是使用此技术的一些提示示例:
提示:“让我们思考气候变化对农业的影响”
提示:“让我们讨论人工智能的当前状态”
提示:“让我们谈谈远程工作的好处和缺点” 您还可以添加开放式问题、陈述或一段您希望模型继续或扩展的文本。
提供提示后,模型将使用其训练数据和算法生成与提示相关的响应,并以连贯的方式继续对话。
这种独特的提示有助于ChatGPT以不同的视角和角度给出答案,从而产生更具动态性和信息性的段落。
使用提示的步骤简单易行,可以真正提高您的写作水平。尝试一下,看看效果如何吧。
第七章:自洽提示
自洽提示是一种技术,用于确保ChatGPT的输出与提供的输入一致。这种技术对于事实核查、数据验证或文本生成中的一致性检查等任务非常有用。
自洽提示的提示公式是输入文本后跟着指令“请确保以下文本是自洽的”。
或者,可以提示模型生成与提供的输入一致的文本。
提示示例及其公式:
示例1:文本生成
任务:生成产品评论
指令:评论应与输入中提供的产品信息一致
提示公式:“生成与以下产品信息一致的产品评论[插入产品信息]”
示例2:文本摘要
任务:概括一篇新闻文章
指令:摘要应与文章中提供的信息一致
提示公式:“用与提供的信息一致的方式概括以下新闻文章[插入新闻文章]”
示例3:文本完成
任务:完成一个句子
指令:完成应与输入中提供的上下文一致
提示公式:“以与提供的上下文一致的方式完成以下句子[插入句子]”
示例4:
事实核查:
任务:检查给定新闻文章的一致性
输入文本:“文章中陈述该城市的人口为500万,但后来又说该城市的人口为700万。”
提示公式:“请确保以下文本是自洽的:文章中陈述该城市的人口为500万,但后来又说该城市的人口为700万。”
数据验证:
任务:检查给定数据集的一致性
输入文本:“数据显示7月份的平均温度为30度,但最低温度记录为20度。”
提示公式:“请确保以下文本是自洽的:数据显示7月份的平均温度为30度,但最低温度记录为20度。”
第八章:种子词提示
种子词提示是一种通过提供特定的种子词或短语来控制ChatGPT输出的技术。种子词提示的提示公式是种子词或短语,后跟指令“请根据以下种子词生成文本”。
示例:
文本生成:
任务:编写一篇有关龙的故事
种子词:“龙”
提示公式:“请根据以下种子词生成文本:龙”
语言翻译:
任务:将一句话从英语翻译成西班牙语
种子词:“你好”
提示公式:“请根据以下种子词生成文本:你好”
这种技术允许模型生成与种子词相关的文本并对其进行扩展。这是一种控制模型生成文本与某个特定主题或背景相关的方式。
种子词提示可以与角色提示和指令提示相结合,以创建更具体和有针对性的生成文本。通过提供种子词或短语,模型可以生成与该种子词或短语相关的文本,并通过提供有关期望输出和角色的信息,模型可以以特定于角色或指令的风格或语气生成文本。这样可以更好地控制生成的文本,并可用于各种应用程序。
以下是提示示例及其公式:
示例1:文本生成
任务:编写一首诗
指令:诗应与种子词“爱”相关,并以十四行诗的形式书写。
角色:诗人
提示公式:“作为诗人,根据以下种子词生成与“爱”相关的十四行诗:”
示例2:文本完成
任务:完成一句话
指令:完成应与种子词“科学”相关,并以研究论文的形式书写。
角色:研究员
提示公式:“作为研究员,请在与种子词“科学”相关且以研究论文的形式书写的情况下完成以下句子:[插入句子]”
示例3:文本摘要
任务:摘要一篇新闻文章
指令:摘要应与种子词“政治”相关,并以中立和公正的语气书写。
角色:记者
提示公式:“作为记者,请以中立和公正的语气摘要以下新闻文章,与种子词“政治”相关:[插入新闻文章]”
第九章:知识生成提示
知识生成提示是一种从ChatGPT中引出新的、原创的信息的技术。
知识生成提示的公式是“请生成关于X的新的和原创的信息”,其中X是感兴趣的主题。
这是一种利用模型预先存在的知识来生成新的信息或回答问题的技术。
要将此提示与ChatGPT一起使用,需要将问题或主题作为输入提供给模型,以及指定所生成文本的任务或目标的提示。
提示应包括有关所需输出的信息,例如要生成的文本类型以及任何特定的要求或限制。
以下是提示示例及其公式:
示例1:知识生成
任务:生成有关特定主题的新信息
说明:生成的信息应准确且与主题相关
提示公式:“生成有关[特定主题]的新的准确信息”
示例2:问答
任务:回答问题
说明:答案应准确且与问题相关
提示公式:“回答以下问题:[插入问题]”
示例3:知识整合
任务:将新信息与现有知识整合
说明:整合应准确且与主题相关
提示公式:“将以下信息与有关[特定主题]的现有知识整合:[插入新信息]”
示例4:数据分析
任务:从给定的数据集中生成有关客户行为的见解
提示公式:“请从这个数据集中生成有关客户行为的新的和原创的信息”
第十章:知识整合提示
这种技术利用模型的现有知识来整合新信息或连接不同的信息片段。
这种技术对于将现有知识与新信息相结合,以生成更全面的特定主题的理解非常有用。
如何与ChatGPT一起使用:
模型应该提供新信息和现有知识作为输入,以及指定生成文本的任务或目标的提示。
提示应包括有关所需输出的信息,例如要生成的文本类型以及任何特定的要求或限制。
提示示例及其公式:
示例1:知识整合
任务:将新信息与现有知识整合
说明:整合应准确且与主题相关
提示公式:“将以下信息与关于[具体主题]的现有知识整合:[插入新信息]”
示例2:连接信息片段
任务:连接不同的信息片段
说明:连接应相关且逻辑清晰
提示公式:“以相关且逻辑清晰的方式连接以下信息片段:[插入信息1] [插入信息2]”
示例3:更新现有知识
任务:使用新信息更新现有知识
说明:更新的信息应准确且相关
提示公式:“使用以下信息更新[具体主题]的现有知识:[插入新信息]”
【未完,下面评论中继续...】
(本文翻译自《The Art of Asking ChatGPT for High-Quality Answers A Complete Guide to Prompt Engineering Techniques》这本书
【版權聲明】
本文爲轉帖,原文鏈接如下,如有侵權,請聯繫我們,我們會及時刪除
原文鏈接:https://mp.weixin.qq.com/s/w1fn7qU6tWNtMw-Wv_2Hfw Tag: ChatGPT ChatGPT技巧 Prompt 资料翻译